The Adsorption Performance of Porous Activated Carbons Prepared from Iron (II) Precursors Precipitated on the Porous Carbon Matrix Thermolysis

نویسندگان

چکیده

The creation of new compounds featuring high adsorption and catalytic performance with magnetic properties the material is one important fields magnetochemistry. typical synthetic schemes carbonaceous adsorbents are rather complicated due to use inert atmosphere difficult wet methods magnetite precipitation. arising experimental issues prevent industrial production magnetically activated carbons. In order overcome these obstacles, we suggested a novel approach porous carbons: composite synthesis based on iron (II) salt precipitation carbon subsequent thermolysis. We facilitated process at stage washing. route used simple can be applied industrially. present paper focused product prepared from commercial carbons BAU-A AG-3. structure was studied low-temperature nitrogen that revealed surface area decreased by 26% in case 40% AG-3 an increase mesopore volume. Phenol nitrobenzene water solution tested BAU-A. isotherms obtained described well using Langmuir model. limiting value lower than pristine carbon. relative decrease close specific area. constant remains same, showing centers phenol same for its precursor. Thus, showed study developed almost retain their precursors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of porous texture on hydrogen adsorption in activated carbons

Physisorption-based hydrogen (H 2) storage in microporous carbons has a trade-off between adsorption capacity and adsorption enthalpy [5]. Conceptually, this problem is best illustrated in terms of the ideal slit pore formed from two parallel, semi-infinite graphite slabs. Packing density is maximized when the pore width is several times larger than the diameter of the H 2 molecule, since it pe...

متن کامل

Deformation of porous carbons upon adsorption.

N2 and CO2 sorption measurements with in situ dilatometry implemented in a commercial volumetric sorption instrument were performed at 77 and 273 K, respectively. The resolution of the linear deformation was about ±0.2 μm. To separate effects due to microporosity, external surface area and mesopores synthetic porous carbons (xerogels) with different external surface areas and microporosities we...

متن کامل

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Adsorption of Pb(II) by activated carbon prepared from Melia azedarach fruit: Equilibrium and thermodynamics

In this work, a low-cost activated carbon as well as non-hazardous material, with high adsorption capacity, was prepared from Melia azedarach fruit (MF) by ZnCl2 activation for the removal of Pb(II) toxic metal from aqueous solutions. The microstructure of the activated carbon was observed by Scanning Electron Microscopy (SEM). Batch experiments have been performed as a function of pH, contact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Magnetochemistry

سال: 2023

ISSN: ['2312-7481']

DOI: https://doi.org/10.3390/magnetochemistry9060151